

1 WATER-USE DYNAMICS OF AN ALIEN INVADED RIPARIAN FOREST WITHIN THE
2 SUMMER RAINFALL ZONE OF SOUTH AFRICA

3
4 Scott-Shaw Bruce C¹ and Everson Colin S^{1,2}

5
6 ¹Center for Water Resources Research, School of Agricultural, Earth and Environmental Sciences,
7 University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.

8 ²Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria
9 0028, South Africa.

10

11 **Abstract**

12

13 In South Africa the invasion of riparian forests by alien trees has the potential to affect the
14 country's limited water resources. Tree water-use measurements have therefore become an
15 important component of recent hydrological studies. It is difficult for South African
16 government initiatives, such as the Working for Water (WfW) alien clearing programme, to
17 justify alien tree removal and implement rehabilitation unless hydrological benefits are known.
18 Consequently water-use within a riparian forest in the upper Mgeni catchment of KwaZulu-
19 Natal in South Africa was monitored over a two year period. The site consisted of an indigenous
20 stand of eastern mistbelt forest that had been invaded by *Acacia mearnsii*, *Eucalyptus nitens*
21 and *Solanum mauritianum*. The heat ratio method of the heat pulse velocity sap flow technique
22 and the stem steady state techniques were used to measure the sap flow of a selection of
23 indigenous and introduced species. The indigenous trees at New Forest showed clear seasonal
24 trends in the daily sap flow rates varying from 8 to 25 L·day⁻¹ in summer (sap flow being
25 directly proportional to tree size). In the winter periods this was reduced to between 3 and 6
26 L·day⁻¹ when limited energy flux was available to drive the transpiration process. The water-
27 use in the *A. mearnsii* and *E. grandis* trees showed a slight seasonal trend, with a high flow
28 during the winter months in contrast to the indigenous species. The water-use in the understorey
29 indicated that multi-stemmed species used up to 12 L·day⁻¹. Small alien trees (<30 mm) *A. mearnsii*, and *S. mauritianum* used up to 4 L·day⁻¹ each. The combined accumulated daily sap
30 flow per year for the three *A. mearnsii* and *E. grandis* trees was 6 548 and 7 405 L·year⁻¹
31 respectively. In contrast, the indigenous species averaged 2 934 L·year⁻¹, clearly demonstrating
32 the higher water-use of the introduced species. After spatial up-scaling, it was concluded that,
33 at the current state of invasion by 21 %, the stand used 40 % more water per unit area than if
34 the stand were in a pristine state. If the stand were to be heavily invaded, at the same stem
35 density of the indigenous forest, a 100 % increase in water-use would occur over an average
36 rainfall year.

37

38 **Key Words:** *Indigenous trees, introduced trees, sap flow, transpiration, upscaling*

1 1. Introduction

2

3 Parts of South Africa experience up to 87% alien tree invasions (Working for Water, 2011),
4 with most of these being in riparian areas that have readily available water and are difficult to
5 manage. In South Africa there is a limited understanding of the extent to which tree species
6 (particularly those in the riparian area) contribute to total evaporation. As such, it is difficult
7 for government organizations and scientists to justify alien tree removal and rehabilitation
8 unless a known hydrological benefit can be seen. The deep fertile soils, with high soil moisture
9 contents associated with riparian areas, make them ideal for plant establishment and growth
10 (Everson *et al.*, 2007). In South Africa, these areas are extremely vulnerable to invasion by
11 pioneer plant species, particularly species that have historically been introduced for
12 commercial forestry. There is a widespread belief (which has been supported by numerous
13 studies: Olbrich *et al.*, 1996; Dye *et al.*, 2001; Everson *et al.*, 2007; Dye *et al.*, 2008; Gush and
14 Dye, 2008; Gush and Dye, 2009; Gush and Dye, 2015) in South Africa that indigenous tree
15 species, in contrast to the introduced tree species, use less water and should be planted more
16 widely in land rehabilitation programmes. Little research has been undertaken on the riparian
17 area which excludes water limitations (except in severe drought conditions).

18

19 The benefits of healthy riparian zones in providing basic ecosystem services are well known
20 (Askey-Dorin *et al.* 1999; Richardson *et al.*, 2007). These benefits and the impacts of
21 degradation through alien plant invasions were fully described in a study by Scott-Shaw *et al.*
22 (2017) on the water use of plants in the Mediterranean climate of the Western Cape region of
23 South Africa (Scott-Shaw *et al.*, 2017). Here we summarize the most important aspects relevant
24 to this study.

25

- 26 1. Commercial forestry has been blamed for increasing the green water (water lost by total
27 evaporation) and decreasing the blue water (water in rivers and dams) in areas across South
28 Africa (Jewitt, 2006). For these reasons, invasive alien plants, particularly introduced
29 commercial trees, are considered to be a major threat to water resources and biodiversity.
- 30 2. There is a widespread belief in South Africa and globally that indigenous tree species, in
31 contrast to the introduced trees, are water efficient and should be planted more widely in
32 land restoration programmes. This is based on observations that indigenous trees are
33 generally slow growing, and that growth and water-use are broadly linked (Everson *et al.*,
34 2008; Gush, 2011).
- 35 3. At the ecosystem scale, studies indicate that invasive species use 189 % more water than
36 indigenous dominated stands, particularly in tropical moist forests (Nesotto *et al.*, 2005;
37 Yepez *et al.*, 2005; Fritzsche *et al.*, 2006). In the high rainfall areas of South Africa,
38 invasive alien plants growing in riparian areas are estimated to reduce annual streamflow
39 by $523 \times 10^6 \text{ m}^3$ with a predicted annual reduction estimated to be as high as $1 314 \times 10^6 \text{ m}^3$
40 if allowed to reach a fully invaded state (Cullis *et al.*, 2007).
- 41 4. Management of invaded riparian zones can result in hydrological gains disproportionately
42 greater than the catchment area affected, with up to three times more streamflow yield than
43 upslope areas (Scott and Lesch, 1996; Scott, 1999).
- 44 5. For many field and modelling applications, accurate estimates of total evaporation (ET) are
45 required, but are often lacking. Sap flux density measurements give precise information on
46 flow directions as well as spatial and temporal flow distribution (Vandegehuchte and
47 Steppe, 2013). The heat pulse velocity (HPV) method is the most accurate of the available
48 methods when compared against gravimetric methods (Steppe *et al.*, 2010; Vandegehuchte
49 and Steppe, 2013).

50

1 The New Forest site in KwaZulu-Natal, South Africa is part of a Working for Water (WfW)
2 clearing programme. The government-funded WfW programme clears catchment areas of
3 invasive alien plants with the aim of restoring hydrological functioning while also providing
4 poverty relief to local communities through job creation (Turpie *et al.*, 2008). The aim of this
5 study was to quantify the potential hydrological benefit of the conversion of invaded stands to
6 more pristine stands for forest management practices. A detailed ecological study was
7 undertaken in conjunction with the two year hydrological study.

8
9 **2. Methods**

10
11 An overview of the study site, sampling design and equipment implemented to carry out the
12 study has been provided in this Section. Details on the Heat Pulse Velocity (HPV) technique
13 has been documented in a previous paper (Scott-Shaw *et al.*, 2017) and will not be repeated
14 here.

15
16 **2.1. The Study Area**

17
18 The New Forest riparian area is located at latitude 29°28'30" S and longitude 29°52'48" E at
19 approximately 1760 m above sea level (Figure 1). The riparian area occurs along a tributary to
20 the upper Umgeni River, within Quaternary Catchment (QC) U20A. The New Forest riparian
21 area falls within the Eastern Mistbelt forest zone, which is dominated by *Leucosidea sericea*,
22 *Halleria lucida*, *Celtis africana* and *Afrocarpus falcatus*. The surrounding natural areas are
23 covered by Highland Sourveld (Acocks' 1988) or Drakensberg Foothill Moist Grasslands
24 (Mucina and Rutherford, 2006). The study site is typical of invasive alien plant (IAP) invasion,
25 whereby plantations have been grown in traditionally fire dominated grasslands and have
26 subsequently invaded the surrounding riparian areas. Eastern Mistbelt forests can be
27 characterised by cool, tall inland forests (Pooley, 2003). The mountain slopes of the area consist
28 of fractured dolerite dykes and basaltic outpourings (Crowson, 2008). The soils show evidence
29 of high precipitation and age with shallow unstructured soils occurring on the upper slopes, red
30 a-pedal soils on the midslope and soils with a underlying G-horizon dominating the low lying
31 areas.

32
33 Approximately 80% of the precipitation occurs in the summer months, which mostly consists
34 of orographically-induced and squall-line thunderstorms (Schulze, 1982). Interception from
35 mist makes a large contribution to the seasonal precipitation and determines the distribution of
36 the mistbelt forest. The long-term mean annual precipitation is between 941 and 1000 mm with
37 a distinct dry season from May to August. Average air temperatures range from 25.2 °C in the
38 summer to 16.9 °C in the winter, with the highest air temperatures occurring on the North-
39 facing slopes. Cool mountain winds occur at night with warm up-valley winds occurring during
40 the day (Crowson, 2008). Strong berg (westerly) winds are prevalent during August to
41 September and play a significant role in the spread of fire (Schulze, 1982).

42
43 New Forest farm is privately owned. The area south of the Umgeni tributary has been planted
44 with *Acacia mearnsii* and *Pinus patula* since the 1960s. The riparian area has since been heavily
45 invaded (> 20 %) with *A. mearnsii*, *Eucalyptus nitens* and *Solanum mauritianum*. Riparian
46 invasive alien tree clearing by WfW has been ongoing in the area.

1 **2.2 Sampling Design**

2

3 Five sites, each representing frequently occurring indigenous and introduced tree species, were
4 instrumented for water-use monitoring. These trees included a size range of invasive *A.*
5 *mearnsii* and *E. nitens* trees; a selection of common indigenous trees such as *Gymnosporia*
6 *buxifolia*, *Celtis africana* and *Searsia pyroides* and a selection of trees growing in the
7 understory (*S. mauritianum*, *A. mearnsii* and *Buddleja salviifolia*). The leaf area index (LAI)
8 within this stand was 3.1 during the summer months with a reduction to 2.2 during the winter
9 months due to the presence of deciduous species. There was little variation in LAI throughout
10 the forest due to a uniform invasion by introduced trees and the disturbed nature of the
11 indigenous species across the stand.

12

13 The trees within the riparian forest were in a disturbed state. The overall canopy height of the
14 indigenous species was low, ranging from 4.1 to 8.3 meters. The invasive species were much
15 taller, ranging from 13.1 to 16.6 meters. The physical characteristics of each monitored tree is
16 provided in Table 1. There was variability between the stem moisture content and wood density
17 between species, which can be explained by the different physical characteristics of the trees
18 measured (variations in sap wood depth and active xylem concentration). A forest ecology
19 study (Everson *et al.*, 2016) undertaken at New Forest compiled stem density measurements
20 for re-growth forest, invaded riparian areas and on *S. mauritianum* dominated plots. The
21 findings indicated that in the riparian forest, there was a density of 1 632 stems·ha⁻¹ invasive
22 species with 6 090 stems·ha⁻¹ of indigenous species. In the *S. mauritianum* plots, there were 1
23 337 stems·ha⁻¹ of the invasive species, with 2 600 stems·ha⁻¹ of the remaining indigenous
24 species.

25

26 **2.3. Meteorological Station**

27

28 A meteorological station was established on the 19th of September 2012 at New Forest farm in
29 a nearby natural grassland, 250 m from the tree monitoring sites. Rainfall (TE525, Texas
30 Electronics Inc., Dallas, Texas, USA), using a tipping bucket rain gauge was measured at a
31 height of 1.2 meters from the ground. Air temperature and relative humidity (HMP45C, Vaisala
32 Inc., Helsinki, Finland), solar irradiance (LI-200, LI-COR, Lincoln, Nebraska, USA), net
33 radiation (NR-Lite, Kipp and Zonen, Delft, The Netherlands) wind speed and direction (Model
34 03002, R.M. Young, Traverse city, Michigan, USA) were all measured at a height of 2 m from
35 the ground. These were measured at a 10 s interval and the appropriate statistical outputs were
36 recorded every hour. A flat and uniform short grassland area which was regularly mowed was
37 selected to meet the requirement for FAO 56 reference evaporation calculation.

38

39 **2.4 Tree Water-use Measurements**

40

41 A Heat Pulse Velocity (HPV) system using the heat ratio algorithm (Burgess, 2001) was set up
42 to monitor long-term sap flow on all of the selected trees over a three year period. The
43 instrumentation is described further by Clulow *et al.* (2013) and Scott-Shaw *et al.* (2017) and
44 included hourly measurements of sap flow heater trace using a pair of type T-thermocouple
45 probes. Regular maintenance was undertaken to ensure sufficient power and operation of the
46 equipment. Measurements of sapwood depth, wood density and moisture content (described
47 by Marshall, 1958) were taken to allow for up-scaling of probe measurements to whole tree
48 water use (L·h⁻¹). Non-functional or damaged xylem (referred to as wounding) around the
49 thermocouples was accounted for using wound correction coefficients described by Burgess
50 (2001). Tree growth was recorded during each site visit by measuring diameter at breast height

1 and canopy height using a VL402 hypsometer (Haglöf, Sweden). Leaf area index using a LAI-
2 2200 (LI-COR, Lincoln, Nebraska, USA) was measured regularly throughout the stand. The
3 riparian forest had a limited aerodynamic fetch, which was not appropriate for the eddy
4 covariance and scintillometry techniques. Although the riparian stand had a heterogeneous
5 composition, the availability of detailed stem density measurements allowed for a methodology
6 to be followed based on recent up-scaling studies (Ford *et al.*, 2007; Miller *et al.*, 2007).

7
8 The Stem Steady State (SSS) technique, which estimates sap flow by solving a heat balance
9 for a segment of stem that is supplied with a known amount of heat (Grime and Sinclair, 1999),
10 was implemented on the smaller trees in the under-storey that were not quantifiable using the
11 HPV technique. Two Dynamax Flow 32-K systems (Dynamax, Houston, TX, USA) were
12 installed at New Forest. Each of these systems was powered by a 12V 100Ah battery, and
13 consisted of a CR1000 data logger (Campbell Scientific Inc.) and an AM16/32B multiplexer.
14 A voltage control unit regulated the voltage output depending on the number of collars and the
15 size of the collars. The gauge's insulating sheath (referred to as a 'collar') contains a system of
16 thermocouples that measure temperature gradients associated with conductive heat losses
17 vertically (up and down the stem), and radially through the sheath (Allen and Grime, 1994). A
18 foam insulation and weather shield were installed around the stem in order to sufficiently
19 minimize extraneous thermal gradients that could influence the heated section of stem (Smith
20 and Allen, 1996). The conduction of heat vertically upwards and downwards was calculated
21 by measuring voltages which corresponded to the temperature difference between two points
22 above and below the heater (Savage *et al.*, 2000). The radial heat was calculated by measuring
23 the temperature difference of the insulated layer surrounding the heater (Savage *et al.*, 2000).
24 Finally the voltage applied to the heater was measured. These measurements allowed the
25 energy flux ($J \cdot s^{-1}$) to be calculated (Savage *et al.*, 2000).

26 27 **2.5 Soil Water Measurements**

28
29 Hourly volumetric soil water contents were recorded at sites 1 and 2 within the riparian forest
30 with three time domain reflectometry (TDR) probes (Campbell Scientific Inc, CS 615) installed
31 horizontally at each site. The probes were installed at depths of 0.1, 0.3 and 0.5 m below the
32 litter layer, due to shallow soils at the site. A thick litter layer was observed throughout the site
33 consisting of mostly indigenous leaves and large broken branches from cattle and climatic
34 disturbances. The hourly volumetric water content measurements provided an understanding
35 of the responses of trees to rainfall events, or stressed conditions. Additional soil samples were
36 taken to determine the distribution of roots, soil bulk density and soil water content.

37 38 **3. Results**

40 **3.1. Weather Conditions during the Study Period**

41
42 The historical mean annual precipitation (MAP) for the New Forest area is 941 mm. During
43 the two-year monitoring period the area received 1164 and $1110 \text{ mm} \cdot \text{a}^{-1}$ for 2013 and 2014
44 respectively. The rainfall distribution had a strong seasonal trend throughout the two years with
45 an exceptionally high amount of $120 \text{ mm} \cdot \text{day}^{-1}$ in November 2014 (Figure 2). The daily solar
46 radiation peaked at $39 \text{ MJ} \cdot \text{m}^{-2}$ following the same seasonal trend to that of the daily air average
47 temperatures.

48
49 During periods of high solar radiation, the water vapour pressure deficit was high and
50 correlated to peaks in transpiration rates. An average daily air temperature of 18.4°C was

1 recorded at New Forest in the summer months. During these months, daily maximum air
2 temperatures occasionally exceeded 30 °C. During the winter months, the air temperatures
3 averaged 11.7 °C due to numerous days with low solar radiation. Periods of low solar radiation
4 correspond to overcast and/or rainfall periods and would likely result in little to no transpiration
5 occurring. The daily reference total evaporation (ET_0), derived from data captured on site,
6 averaged approximately 1 mm·day⁻¹ in the winter period to 5 mm·day⁻¹ during the summer
7 period. The monthly climate data illustrates the seasonal rainfall and air temperature trend
8 (Figure 3). The seasonal distribution of rainfall is important as it is during these periods of
9 water scarcity where the vegetative water-use becomes significant.

10

11 3.2. Tree Water-Use

12

13 The radial heat pulse velocity of a *G. buxifolia* was measured over a short summer period
14 (Figure 4). The velocity of water moving through the tree was highest (up to 20 cm·h⁻¹) nearest
15 to the bark. Probes inserted deeper in the tree (> 15 mm) measured very little flow suggesting
16 that there was less active xylem at these depths, resulting in a small sapwood area. During the
17 winter period the radial heat pulse velocity of *A. mearnsii* had maximal flow 25 mm below the
18 bark (Figure 5). There was still flow occurring at a depth of 35 mm, indicating a much bigger
19 sapwood area than that of the indigenous tree. Furthermore, the sap velocity was high, (> 20
20 cm·h⁻¹) even during the dry winter period. These findings also indicated that correct probe
21 placement is essential in accurately representing the entire sapwood area of each tree.

22

23

24 Individual whole tree water-use showed a clear seasonal water-use trend for the semi-
25 deciduous and deciduous indigenous species (Figure 6). This was attributed to fewer daylight
26 hours and less heat units during the winter months resulting in reduced available energy;
27 therefore limiting the transpiration process. The daily water-use of *S. pyroides* averaged 8
28 L·day⁻¹ in summer compared to 3 L·day⁻¹ in winter, resulting in an accumulated total water use
29 of 1639 L·year⁻¹ (Figure 6 a). The deciduous *C. africana* used large amounts of water in the
30 summer, with an average of 25 L·day⁻¹. In the winter periods, after leaf fall, this species used
31 no water, resulting in a reduction of the total annual water-use (4307 L·year⁻¹). In contrast, *G.*
32 *buxifolia* used approximately 15 L·day⁻¹ in summer compared to 6 L·day⁻¹ in winter, resulting
33 in an accumulated total water use of 3870 L·year⁻¹ over the same period (Figure 6 a, b, c).

34

35 The introduced *A. mearnsii* of a similar stem diameter showed little seasonal variation (Figure
36 6 d). This tree averaged 22 L·day⁻¹ during summer periods and 14 L·day⁻¹ during winter periods
37 yielding a total of 5743 L·year⁻¹, higher than that of the indigenous species and comparable to
38 other large introduced species measured throughout South Africa (Gush *et al.*, 2015).

39

40 The water use of the multi-stemmed *B. salviifolia*, measured using the SSS technique, had the
41 highest daily water use (up to 12 L·day⁻¹) (Figure 7). This tree, although short, had the greatest
42 canopy area due to its lateral growth patterns with its numerous stems. In comparison, the
43 smaller *A. mearnsii* used considerably less water, with a peak of 4 L·day⁻¹. The three *S.*
44 *mauritianum* trees were highly variable, ranging from very low flows (0.4 L·day⁻¹) to in excess
45 of 4 L·day⁻¹. Although these values are small in comparison to the larger trees measured, it
46 does show the importance of the understorey in-stand measurements. These trees, particularly
47 the *S. mauritianum*, have a high density suggesting that the cumulative water-use of these trees
48 is important when scaling up to the total forest water use.

49

1 The daily summer water-use of indigenous trees at site 1 (Table 2) showed low water-use with
2 an average of between 9 and 15 L·day⁻¹ in the summer months. Likewise, the indigenous trees
3 at site 3 were low water users. Despite being deciduous, the *C. africana* used the most water
4 of all the indigenous trees measured. This tree was the tallest of the indigenous trees measured
5 and was not shaded by other species. Given that this species is deciduous, it is important to
6 note that this tree uses a minimal amount of water in the winter when water resources are
7 limited. The indigenous *B. salviifolia*, measured using the SSS technique had a similar water-
8 use to that of the lower climax species.
9 The daily summer water-use of the *A. mearnsii* and the *E. grandis* were high in comparison to
10 the indigenous species. These trees used between 18 and 27 L·day⁻¹ in the summer months and
11 between 14 and 17 L·day⁻¹ in the winter months. On average, the introduced species used 2.4
12 times more water than the average indigenous species. However, this is a direct comparison
13 and would differ to up-scaled comparisons due to the different stem densities of each species.
14

15 3.3. Soil Profile and Water Content

16 The volumetric soil water content (VWC) measured at New Forest was highly responsive to
17 rainfall events (Figure 8 and 9). During the wet summer season, the VWC at the indigenous
18 site 1 (Figure 6) ranged from 27 % in the upper horizon to 35 % in the lower horizon. This
19 indicated a higher clay content in the lower horizon. Towards the dry season, as the vegetation
20 continues to use water, the VWC was depleted to 10 % in the upper horizons. At the introduced
21 site 2, the soils were uniform throughout the horizons. During the summer periods, the profile
22 soil water averaged 27 % whereas it depleted to 9 % or 11 mm of water per 100 mm depth of
23 soil during the dry periods.
24

25 The soils had a dry bulk density (pb) of 1.22 g·cm⁻³, a particle density (ρ_{particle}) of 2.54 g·cm⁻³
26 and a porosity 0.52, typically characteristic of sandy-loam soils. Introduced forestry species are
27 known to have deep rooting systems, with observations of greater than 8 m in South Africa
28 (Everson *et al.*, 2006). This suggested that during dry periods, this stand can access water from
29 deeper layers in the soil profile. However, given the shallow depth of all the soils and the close
30 proximity of the sites to the stream, it is clear that the vegetation in this area was not limited
31 by water availability.
32

33 The VWC at both sites did not respond significantly to rainfall events under 6 mm·h⁻¹ unless
34 during consecutive events. Based on seasonally high transpiration rates we conclude that deep
35 rooted plants in the riparian zone at the site are energy flux limited rather than moisture limited.
36

37 3.4. Upscaling Tree Water-Use

38 The results obtained from both the HPV and SSS techniques were used to determine an actual
39 annual water-use per unit area of the invaded mistbelt forest. Two hypothetical scenarios, a
40 pristine forest and a heavily invaded forest, were also tested. Using the stem density per size
41 class taken from ecological research completed in the area (Everson *et al.*, 2016), stands of
42 forest were compared. As the forest did not have a closed canopy, understorey trees were
43 numerous as more photosynthetically active radiation (PAR) was available throughout the
44 stand. The water-use for a two-year average of the riparian forest in its current state (21 %
45 invaded) was upscaled for all species and size classes. The total stand water-use was
46 approximately 3.3 ML·ha⁻¹·a⁻¹ (330 mm·a⁻¹). This was 29 % of the average annual precipitation
47 recorded during the monitoring period (1030 mm·a⁻¹).
48

49

50

1 Assuming that the site was rehabilitated to a more pristine state, using stem density for non-
2 invaded areas, the upscaled indigenous stand would use $2.39 \text{ ML} \cdot \text{ha}^{-1} \cdot \text{a}^{-1}$ ($239 \text{ mm} \cdot \text{a}^{-1}$). This
3 would be 21 % of the average annual precipitation. If the stand were to degrade further and
4 become heavily invaded, the upscaled invaded stand would use $4.88 \text{ ML} \cdot \text{ha}^{-1} \cdot \text{a}^{-1}$ ($488 \text{ mm} \cdot \text{a}^{-1}$).
5 This would be 43 % of the average annual precipitation. Based on these results we conclude
6 that the invaded stand uses 40 % more water per unit area annually than a pristine indigenous
7 stand. If the stand were to become heavily invaded, a two-fold increase in water-use would
8 occur (104 % increase) with concomitant impacts on the water balance (streamflow). The inter-
9 and intra-species water-use variations, particularly within the heterogeneous indigenous stand,
10 highlight the importance of good replications of a representative sample tree species and size
11 classes. The results also show that it is important to highlight the slope position, physiological
12 characteristics and climatic variations occurring during measurement periods.
13
14 Due to a severe drought in this area, subsequent to the measurement period, these results are
15 more likely to provide substance to land managers and decision makers, indicating the
16 hydrological benefit of restoration and rehabilitation activities.
17

18 4. Discussion and Conclusion

19
20 In South Africa, it has been well documented that introduced commercial tree species, in
21 contrast to indigenous tree species, use more water and, if removed, would result in a net
22 hydrological gain (Olbrich *et al.*, 1996; Dye *et al.*, 2001; Everson *et al.*, 2007; Dye *et al.*, 2008;
23 Gush and Dye, 2008; Gush and Dye, 2009; Gush and Dye, 2015). The HPV and SSS techniques
24 have been used, both locally and internationally, on numerous vegetation types. The accuracy
25 of these measurements has been validated using gravimetric methods (Burgess *et al.*, 2001;
26 Granier and Loustau, 2001; O'Grady *et al.*, 2006; Steppe *et al.*, 2010; Vandegehuchte and
27 Steppe, 2013; Uddin and Smith, 2014; Forster, 2017). In South Africa, the HPV technique has
28 been shown to provide accurate estimates of sap flow in both introduced tree species such as
29 *Acacia mearnsii*, *Pinus patula* and *Eucalyptus nitens*, and indigenous tree species such as
30 *Rapanea melanophloeos*, *Podocarpus henkelii* and *Celtis africana* (Smith and Allen, 1996;
31 Dye *et al.*, 2001; Everson *et al.*, 2007; Dye *et al.*, 2008). There is consensus in the literature that
32 rehabilitation or restoration measures can result in maximising benefits such as goods and
33 services, while minimising water consumption (Gush, 2011).
34

35 A recent study, that was undertaken in conjunction with this study, showed that introduced
36 stands could use up to six times more water than indigenous species in the riparian area (Scott-
37 Shaw *et al.*, 2017). However, this difference was largely related to stem density at a site where
38 high winter rainfall and deep sandy soils were conducive to a high density mature introduced
39 stand. The stand at New Forest, which was highly disturbed and was in a constant state of
40 recovery, did not have a high stem density of mature trees in its current state. The measurements
41 undertaken at this site have allowed for an accurate direct comparison of indigenous and
42 introduced tree water-use. Additionally, the measurements of trees growing in the understorey
43 have provided interesting findings, indicating significant water-use in the sub-canopy layer.
44 The results showed that individual tree water-use is largely inter-species specific. As the
45 introduced species remain active during the dry winter periods, their cumulative water-use is
46 significantly greater than that of the indigenous species. Small trees ($< 30 \text{ mm}$) in the
47 understorey can use up to $2000 \text{ L} \cdot \text{year}^{-1}$, which is important for up-scaling to stand water-use.
48 Up-scaled comparisons showed that due to the invasion by *A. mearnsii* and *E. grandis* (21 %),
49 the stand water-use has increased by 40 %. This is an important finding as it provides clear

1 evidence to justify the hydrological benefit of clearing programmes. If the stand were to be
2 completely invaded, at the same stem density as the indigenous stand, the water-use would
3 double for this particular area. The findings from the understorey suggest that the water-use
4 from this zone should not be excluded from future studies, especially where there is no canopy
5 closure. The promotion of indigenous deciduous trees for rehabilitation or clearing programmes
6 may be important as there would be no transpiration during periods when water resources are
7 limited.

8

9 Spatial estimates of evapotranspiration are required but are difficult to obtain in remote areas
10 with limited aerodynamic reach. Remote sensing could be one area where this could be useful
11 given appropriate validation. However the nature of the “thin” riparian strip will require finer
12 scales than provided by most remote sensing products used for evaporation modelling (e.g.
13 Landsat 8). The use of drones could provide the best option for these narrow riparian strips in
14 the subsequent studies. Management dynamics are important in these environments. There is
15 potential for these data to be used in a modelling framework with specific inputs for invaded
16 mixed riparian forests. This would provide a suitable land management tool.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 *Acknowledgements. The research presented in this paper forms part of an unsolicited research*
34 *project (Rehabilitation of alien invaded riparian zones and catchments using indigenous trees:*
35 *an assessment of indigenous tree water-use) that was initiated by the Water Research*
36 *Commission (WRC) of South Africa. The project was managed and funded by the WRC, with*
37 *co-funding and support provided by the Department of Economic Development, Tourism and*
38 *Environmental Affairs (EDTEA). The land owner, Alfie Messenger of New Forest farm is*
39 *acknowledged for allowing field work to be conducted on their property. Assistance in the field*
40 *by Dr. Alistair Clulow, Allister Starke and Siphiwe Mfeka is much appreciated.*

1 5. References

2

3 Allen, S.J., and Grime, V.L.: Measurements of transpiration from savannah shrubs using sap
4 flow gauges. *Agricultural and Forest Meteorology*. 75: 23-41, 1994.

5

6 Askey-Dorin, M., Petit, N., Robins, L., and McDonald, D.: The role of vegetation in riparian
7 management. In: *Riparian Land Management Technical Guidelines*. Vol. 1. Principles of
8 Sound Management. Eds. S. Lovett and P. Price. LWRRDC Canberra. pp. 97-120, 1999.

9

10 Baruch, Z., and Fernandez, D.S.: Water relations of native and introduced C4 grasses in a
11 neotropical savanna. *Oecologia* 96:179–185, 1993.

12

13 Burgess, S.O., Adams, M.A., Turner, N.C., Beverly, C.R., Ong, C.K., Khan, A.A.H., and Bleby,
14 T.M.: An improved heat pulse method to measure low and reverse rates of sap flow in woody
15 plants, *Tree Physiol.*, 21, 589-598, 2001.

16

17 Cavalieri, M.A., and Sack, L.: Comparative water use of native and invasive plants at multiple
18 scales: a global meta-analysis. *Ecology*, 91(9), 2010, pp. 2705–2715, 2010.

19

20 Cleverly, J.R., Smith, S.D., Sala, A., and Devitt, D.A.: Invasive capacity of *Tamarix*
21 *ramosissima* in a Mojave Desert floodplain: the role of drought. *Oecologia* 111:12–18, 1997.

22

23 Clulow, A.D., Everson, C.S., Price, J.S., Jewitt, G.P.W., and Scott-Shaw, B.C.: Water-use
24 dynamics of a peat swamp forest and dune forest in Maputaland, South Africa, *Hydrol. Earth*
25 *Syst. Sci.*, 17, 2053-2067, 2013.

26

27 Crowson, J.: Ezemvelo KZN Wildlife. 2008. *Integrated Management Plan: uMngeni Veli*
28 *Nature Reserve, South Africa*. Ezemvelo KZN Wildlife, Pietermaritzburg, 67, 2008.

29

30 Cullis, J., Görgens, A., and Marais, C.: A strategic study of the impact of invasive alien
31 vegetation in the mountain catchment areas and riparian zones of South Africa on total surface
32 water yield. *Water SA* 33 (1) 35-42, 2007.

33

34 Dixon, P., Hilton, M., and Bannister, P.: *Desmoschoenus spiralis* displacement by *Ammophila*
35 *arenaria*: the role of drought. *New Zealand Journal of Ecology* 28:207–213, 2004.

36

37 Dye, P.J.: Modelling growth and water-use in four *Pinus patula* stands with the 3-PG process-
38 based model, *Southern African Forestry Journal*, No. 191(53-63), 2001.

39

40 Dye, P.J., Gush, M.B., Everson, C.S., Jarman, C., Clulow, A., Mengistu, M., Geldenhuys, C.
41 J., Wise, R., Scholes, R.J., Archibald, S., and Savage, M.J.: Water-use in relation to biomass
42 of indigenous tree species in woodland, forest and/or plantation conditions, *Water Research*
43 *Commission Report No. 361/08*, ISBN 978-1-77005-744-9, Water Research Commission,
44 Pretoria, South Africa, 156 pp., 2008.

45

46 Everson, C.S., Gush, M.B., Moodley, M., Jarman, C., Govender, M., and Dye, P.J.: Effective
47 management of the riparian zone vegetation to significantly reduce the cost of catchment
48 management and enable greater productivity of land resources, *Water Research Commission*
49 *Report No. 1284/1/07*, ISBN 978-1-77005-613-8, Pretoria, South Africa, 92 pp., 2007.

50

1 Ford, C.R., McGuire, M.A., Mitchell, R.J. and Teskey, R.O.: Assessing variation in the radial
2 profile of sap flux density in *Pinus* species and its effect on daily water-use. *Tree Physiol.* 24,
3 241-249, 2004.

4

5 Fritzsche, F., Abate, A., Fetene, M., Beck, E., Weise, S., and Guggenberger, G.: Soil-plant
6 hydrology of indigenous and exotic trees in an Ethiopian montane forest. *Tree Physiology*
7 26:1043-1054, 2006.

8

9 Geldenhuys, C.J.: National forest types of South Africa: SA Forestry Magazine, Department
10 of Agriculture, Forestry and Fisheries, Pretoria, South Africa, 2010.

11

12 Granier, A., Loustau, D. and Bréda, N.: A Generic Model of Forest Canopy Conductance
13 Dependent on Climate, Soil Water Availability and Leaf Area Index. *Annals of Forest
14 Science.* 57, 755-765, 2001.

15

16 Grime, V.L., and Sinclair, F.L: Sources of error in stem heat balance sap flow measurements.
17 *Agricultural and Forest Meteorology.* 94: 103-121, 1999.

18

19 Gush, M.B. and Dye, P.J.: Water-use Measurements of Selected Woodland Tree Species within
20 the Kruger National Park. CSIR, % Agrometeorology, School of Environmental Sciences,
21 University of KwaZulu-Natal, Scottsville, South Africa, 2008.

22

23 Gush, M.B. and Dye, P.J.: Water-Use Efficiency Within a Selection of Indigenous and Exotic
24 Tree Species in South Africa as Determined Using Sap Flow and Biomass Measurements.
25 CSIR, % Agrometeorology, School of Environmental Sciences, University of KwaZulu-Natal,
26 Scottsville, South Africa, 2009.

27

28 Gush, M.B.: Water-use, growth and water-use efficiency of indigenous tree species in a range
29 of forest and woodland systems in South Africa. PhD dissertation, Department of Botany,
30 University of Cape Town, 2011.

31

32 Gush, M. B., de Lange, W.J., Dye, P.J. and Geldenhuys, C.J.: Water-use and Socio-
33 Economic Benefit of the Biomass of Indigenous Trees Volume 1: Research Report, 2015.

34

35 Jarman, C., Everson, C.S., Savage, M.J., Clulow, A.D., Walker, S. and Gush, M.B.: Refining
36 tools for evaporation monitoring in support of water resource management. Water Research
37 Commission Report No. 1567/1/08. Water Research Commission, Pretoria, RSA, 2008.

38

39 Jewitt, G.: Integrating blue and green water flows for water resources management and
40 planning, *Physics and Chemistry of the Earth, Parts A/B/C* 31(15-16), 753-762, 2006.

41

42 Joshi, C., de Leeuw, J., and van Duren, I.C.: Remote sensing and GIS applications for mapping
43 and spatial modelling of invasive species. Pages 669-677. ISPRS, Istanbul, Turkey, 2004.

44

45 Kagawa, A., Sack, L., Duarte, K. and James, S.A.: Hawaiian native forest conserves water
46 relative to timber plantation: Species and stand traits influence water-use. *Ecological
47 Applications* 19:1429-1443, 2009.

48

1 Le Maitre, D.C., van Wilgen, B.W., Chapman, R.A., and McKelly, D.H.: Invasive plants and
2 water resources in the Western Cape Province, South Africa: modelling the consequences of a
3 lack of management. *Journal of Applied Ecology* 33, 161–172, 1996.

4

5 Marshall, D.C.: Measurement of sap flow in conifers by heat transport. *Plant Physiology*, 33,
6 385-396, 1958.

7

8 Miller, G.R., Xingyuan, C., Yoram, R., and Baldocchi, D.D.: A new technique for upscaling
9 sap flow transpiration measurements to stand or land use scale fluxes. *Civil and Environmental
10 Engineering*, University of California – Berkeley, 2007.

11

12 Mucina, L., and Rutherford, M.C.: The vegetation of South Africa, Lesotho and Swaziland.
13 *Strelitzia* 19. South African National Biodiversity Institute, Pretoria, 2011.

14

15 Nagler, P.L., Glenn, E.P. and Thompson, T.L.: Comparison of transpiration rates among
16 saltcedar, cottonwood and willow trees by sap flow and canopy temperature methods.
17 *Agricultural and Forest Meteorology* 116:73–89, 2003.

18

19 Nosetto, M. D., Jobbagy, E.G. and Paruelo, J.M.: Landuse change and water losses: the case
20 of grassland afforestation across a soil textural gradient in central Argentina. *Global Change
21 Biology* 11:1101–1117, 2005.

22

23 O'Grady, A.P., Cook, P.G., Howe, P. and Werren, G.: An assessment of groundwater-use by
24 dominant tree species in remnant vegetation communities, Pioneer Valley, Queensland. *Aust.
25 J. Bot.*, 2006.

26

27 Olbrich, B., Olbrich, K., Dye, P.J. and Soko, S. A.: Year-Long Comparison of Water-use
28 Efficiency of Stressed and Non- Stressed *E. grandis* and *P. patula*: Findings and Management
29 Recommendations. CSIR report FOR-DEA 958. CSIR, Pretoria, South Africa, 1996.

30

31 Pratt, R.B., and Black, R.A.: Do invasive trees have a hydraulic advantage over native trees?
32 *Biological Invasions* 8: 1331–1341, 2006.

33

34 Reid, A.M.L., Morin, P.O., Downey, K., French, K.O., and Virtue, J.G.: Does invasive plant
35 management aid the restoration of natural ecosystems? *Biological Conservation* 142:2342-
36 2349, 2009.

37

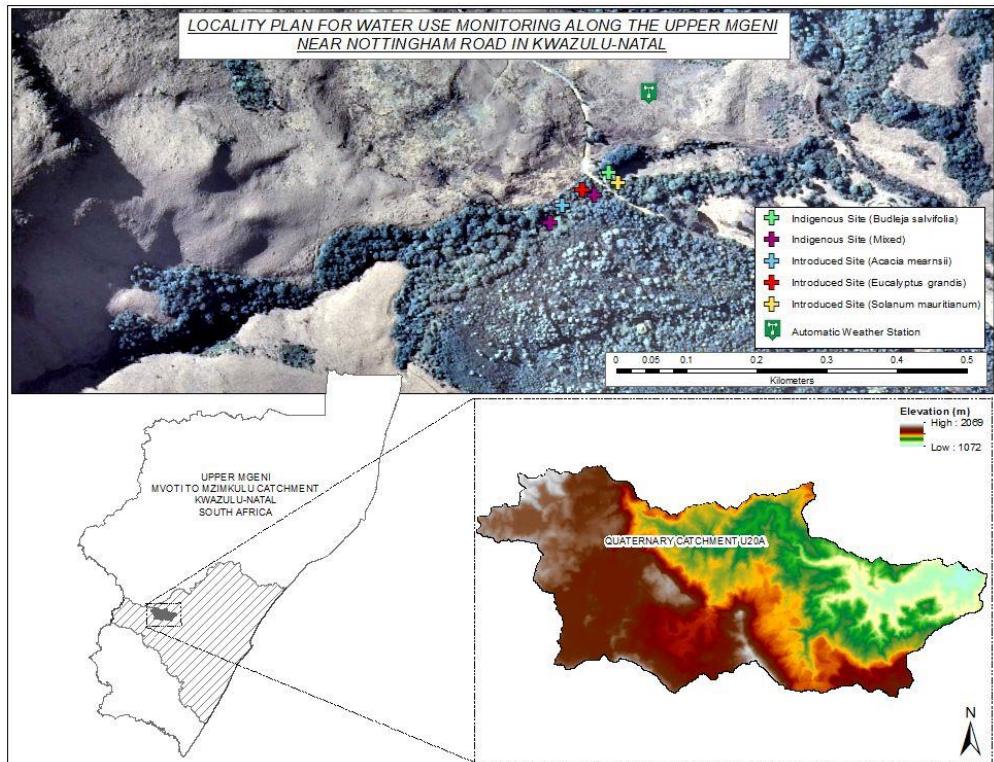
38 Richardson, D.M., Rouget, M., Ralston, S.J., Cowling, R.M., van Rensburg, B.J., and Thuiller,
39 W.: Species richness of alien plants in South Africa: Environmental correlates and the
40 relationship with indigenous plant species richness. *Ecoscience*. 12, 391-402, 2005.

41

42 Savage M.J., Everson, C.S., Odhiambo, G.O., Mengistu, M.G. and Jarmain, C.: Theory and
43 practice of evaporation measurement, with a special focus on SLS as an operational tool for
44 the estimation of spatially-averaged evaporation, Water Research Commission Report No.
45 1335/1/04. Water Research Commission, Pretoria, RSA, 2004.

46

47 Savage, M.J., Graham, A.N.D., and Lightbody, K.E.: An investigation of the stem steady
48 state heat energy balance technique in determining water-use by trees. Water Research
49 Commission. 348: 1-168, 2000.


50

1 Schulze, R.E.: Mapping mean monthly temperature distributions for Natal by trend surface
2 analysis. *South African Journal of Science*, 78, 246 – 248, 1982.
3
4 Scott, D.F.: Managing riparian zone vegetation to sustain streamflow: Results of paired
5 catchment experiments in South Africa. *Canadian Journal of Forest Research*. 29(7): 1149-
6 1157 1999.
7
8 Scott, D.F., and Lesch, W.: The effects of riparian clearing and clearfelling of an indigenous
9 forest on streamflow, stormflow and water quality. *S. Afr. For. J.* 175: 1-14, 1996.
10
11 Smith, D., and Allen, S.: Measurement of sap flow in plant stems. *Journal of Experimental*
12 *Botany*, 47(12), 1833. <http://dx.doi.org/10.1093/jxb/47.12.1833>, 1996.
13
14 Solarz, W.: Biological invasions as a threat for nature. *Progress in Plant Protection* 47:128-133,
15 2007.
16
17 Steppe, K., De Pauw, D.J.W., Doody, T.M., Teskey, R.O.: A comparison of sap flux density
18 using thermal dissipation, heat pulse velocity and heat field deformation methods. *Laboratory*
19 *of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of*
20 *Bioscience Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium*, 2010.
21
22 Swanson, R. H., and Whitfield, D. W. A.: A Numerical Analysis of Heat Pulse Velocity Theory
23 and Practice, *J. Exp. Bot.*, 32, 221-239, 1981.
24
25 Tabacchi, E., Lambs, L., Guilloy, G., Planty-Tabacchi, A.M., Muller, E., and de'Camps, H.:
26 Impacts of riparian vegetation on hydrological processes. *Hydrological Processes*. 14, 2959–
27 2976, 2000.
28
29 Turpie, J.K, Marais, C. and Blignaut, J.N.: The working for water programme: Evolution of a
30 payments for ecosystem services mechanism that addresses both poverty and ecosystem service
31 delivery in South Africa. *Ecol. Econ.* 65 (4) 788-798, 2008.
32
33 Vandegehuchte, M.W. and Steppe, K.: Sap-flux density measurement methods: working
34 principles and applicability. *Laboratory of Plant Ecology, Faculty of Bioscience Engineering,*
35 *Ghent University, Coupure links 653, 9000 Gent, Belgium*, 2013.
36
37 Van Wilgen, B.W., Davies, S.J. and Richardson, D.M.: Invasion science for society: A decade
38 of contributions from the Centre for Invasion Biology. *S Afr J Sci.*;110(7/8), Art. #a0074, 12
39 pages, 2014.
40
41 Wal, R.V.D., Truscott, A.M., Pearce, I.S.K., Cole, L., Harris, M.P., and Wanless, S.: Multiple
42 anthropogenic changes cause biodiversity loss through plant invasion. *Global Change Biology*
43 14:1428-1436, 2008.
44
45 Yepez, E. A., Huxman, T.E., Ignace, D.D., English, N.B., Weltzin, J.F., Castellanos, A.E. and
46 Williams, D.G.: Dynamics of transpiration and evaporation following a moisture pulse in
47 semiarid grassland: a chamber-based isotope method for partitioning flux components.
48 *Agricultural and Forest Meteorology* 132:359–376, 2005.
49

1

2
3
4

Figure 1. Location of New Forest farm research area within KwaZulu-Natal, South Africa.

1
 2
 3

Table 1. Tree physiology and specific data required for the calculation of sap flow and up-scaling.

Indigenous Forest (Site 1)	Diameter (mm)	Size Class	Moisture fraction	Average wounding (mm)	Wood density (kg·m ⁻³)	Representative stem density (stems·ha ⁻¹)
[*] <i>Searsia pyroides</i>	98	Small	0.41	3.1	0.60	
[*] <i>Gymnosporia buxifolia</i>	114	Small	0.44	2.6	0.65	6 090
[*] <i>Gymnosporia buxifolia</i>	58	Small	0.44	2.6	0.66	
Introduced/Alien Forest (Site 2)						
[*] <i>Acacia mearnsii</i>	131	Medium	0.48	3.0	0.69	
[*] <i>Acacia mearnsii</i>	166	Medium	0.47	3.0	0.69	1 632
Indigenous Forest (Site 3)						
[*] <i>Celtis africana</i>	102	Medium	0.49	4.8	0.68	
[*] <i>Kiggerlaria africana</i>	50	Medium	0.46	3.1	0.69	6 090
[*] <i>Leucosidea sericea</i>	212	Large	0.47	2.8	0.64	
Introduced/Alien Forest (Site 4)						
[*] <i>Eucalyptus nitens</i>	165	Small	0.51	3.8	0.71	
[*] <i>Eucalyptus nitens</i>	96	Small	0.51	3.9	0.71	1 632
Mixed understorey (Site 5)						
[#] <i>Buddleja salvifolia</i>	28 ⁺	Small	N/A	N/A	N/A	2 600
[#] <i>Solanum mauritianum</i>	25	Small	N/A	N/A	N/A	-
[#] <i>Solanum mauritianum</i>	10	Small	N/A	N/A	N/A	-
[#] <i>Solanum mauritianum</i>	19.1	Small	N/A	N/A	N/A	1 337
[#] <i>Solanum mauritianum</i>	26.7	Small	N/A	N/A	N/A	-
[#] <i>Acacia mearnsii</i>	25.6	Small	N/A	N/A	N/A	-

4 *Note: * indicates that the HPV technique was used and # indicates that the SSS technique was used. +indicates average stem diameter for multi-stemmed trees.

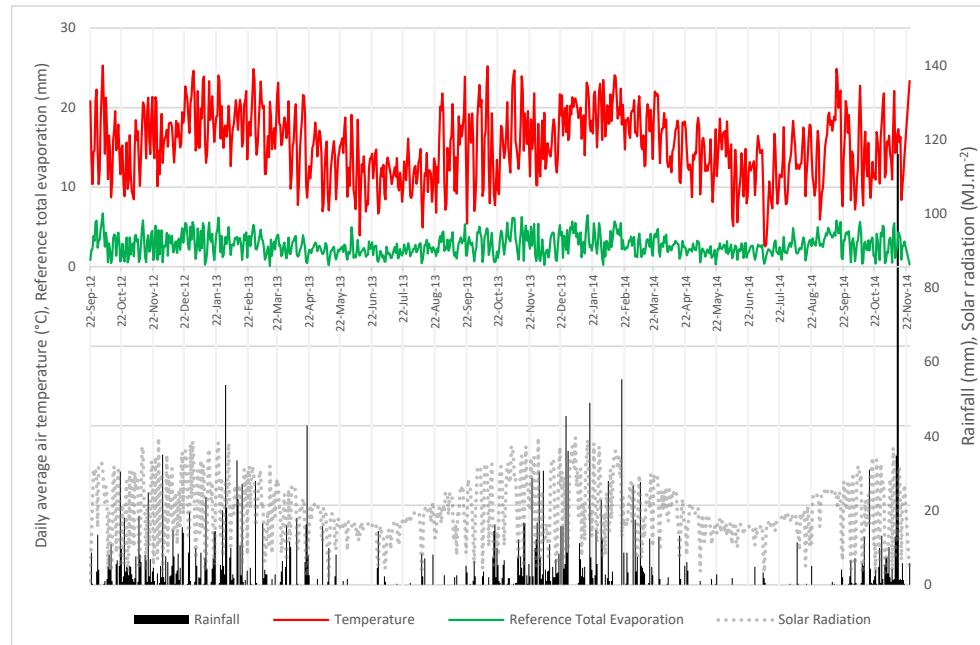


Figure 2. The daily rainfall, solar radiation, average air temperatures and reference total evaporation at New Forest.

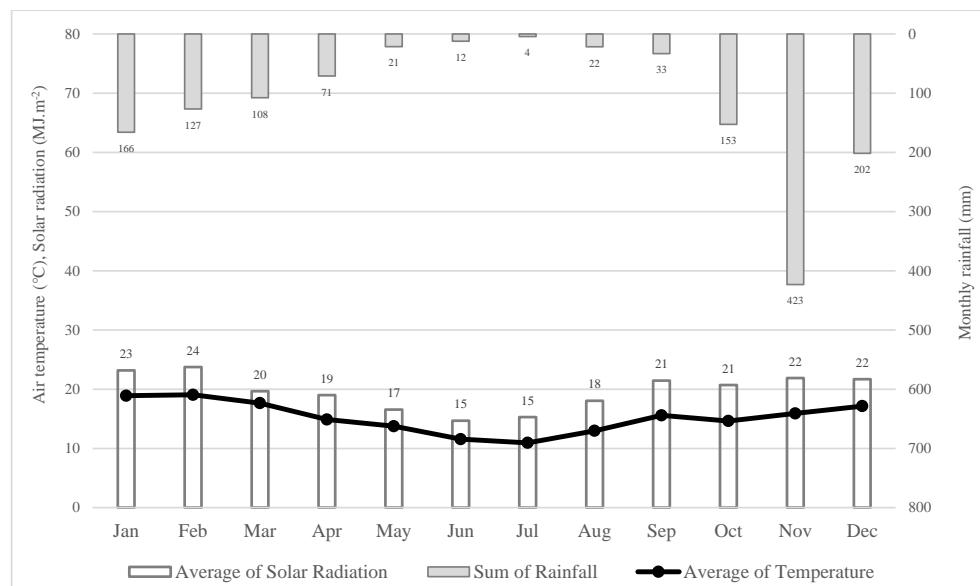
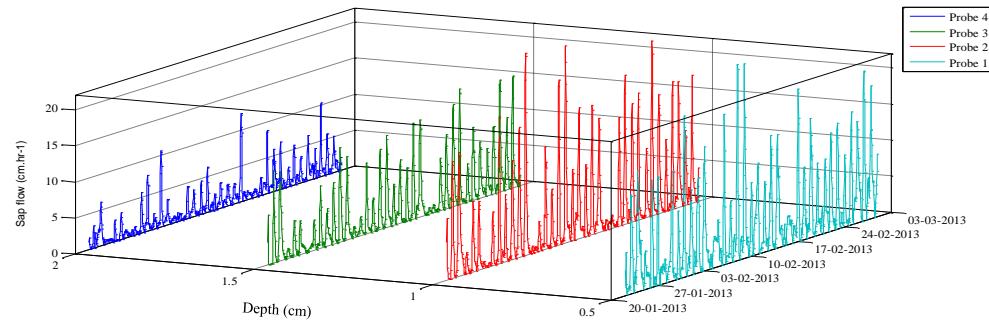
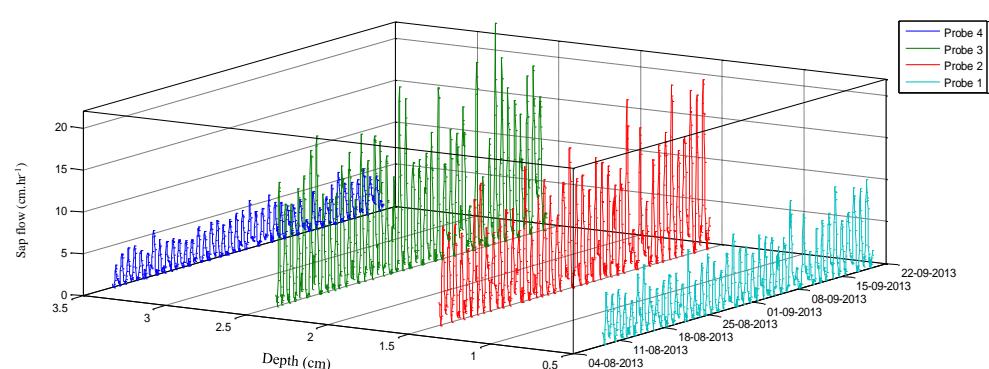




Figure 3. The monthly rainfall, monthly solar radiant density, and average monthly air temperatures at New Forest averaged over two years.

2 Figure 4. Hourly heat pulse velocity of a *G. buxifolia* (\varnothing : 114 mm) at New Forest

4 Figure 5. Hourly heat pulse velocity of an *A. mearnsii* (\varnothing : 131 mm) at New Forest

5

6

1
 2
 3
 4
 5
 6
 7

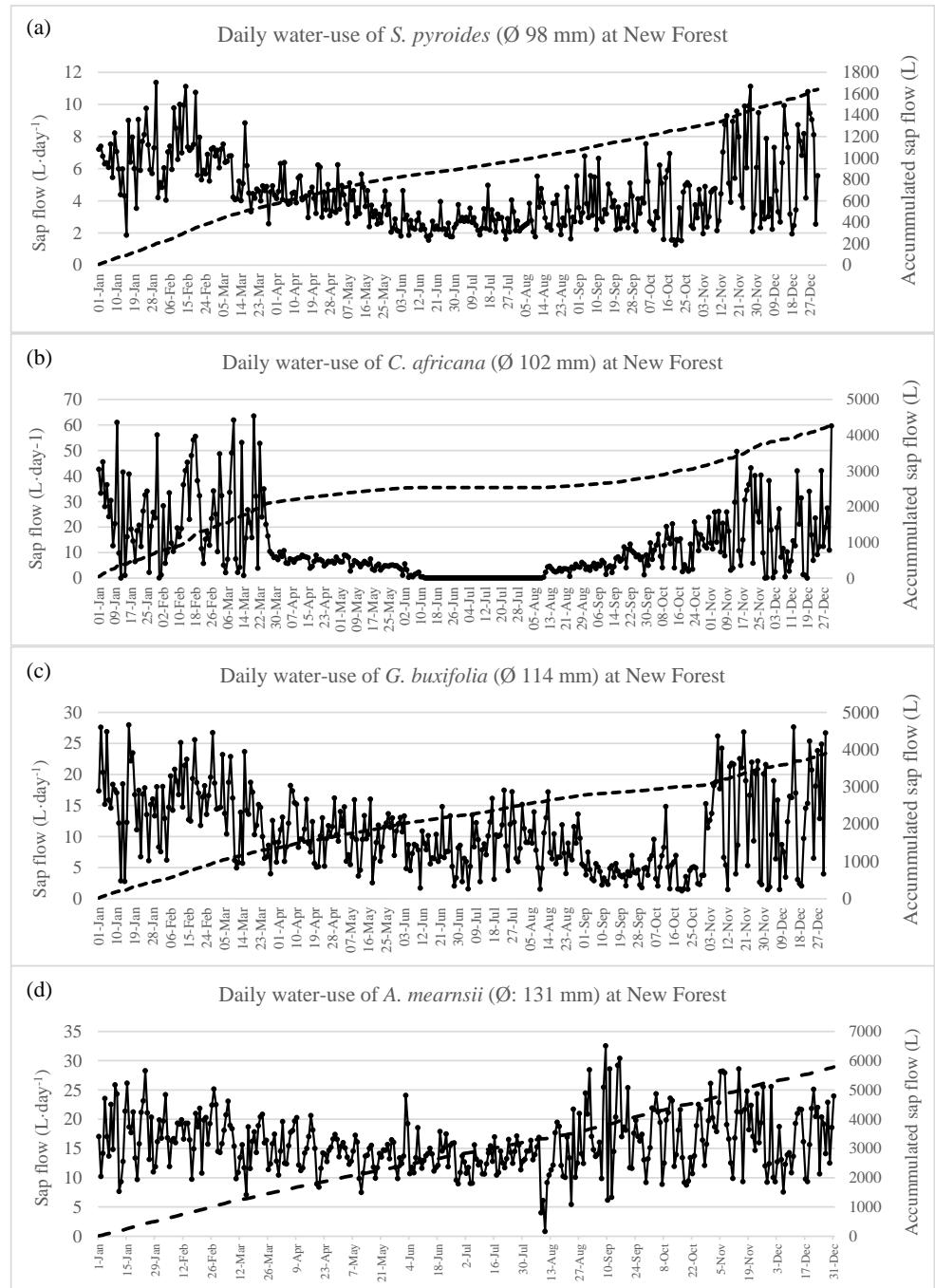
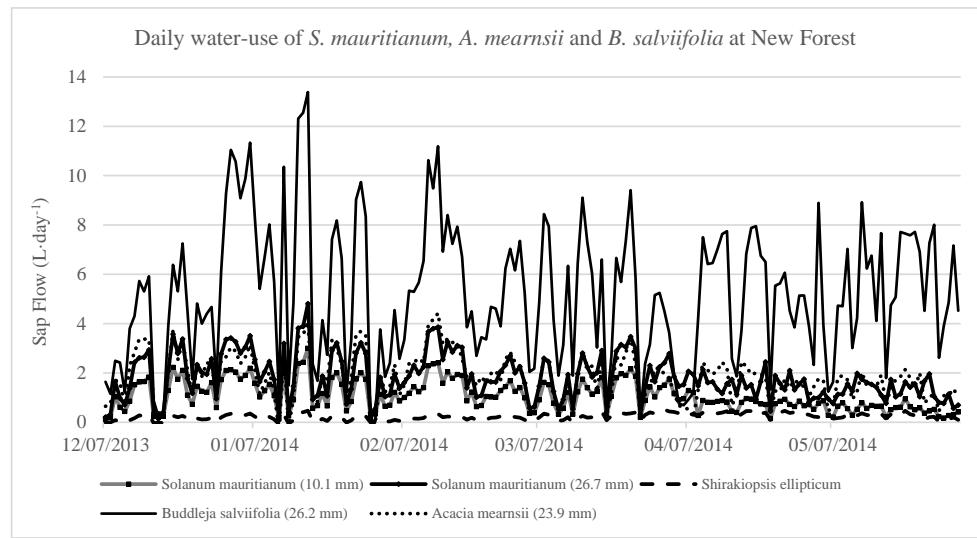
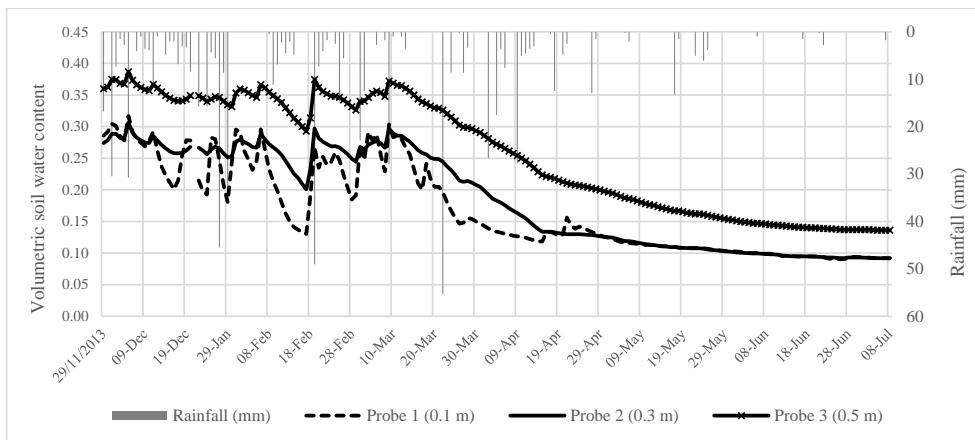



Figure 6. Sap flow (daily and accumulated) averaged over two years (2013 & 2014) from an indigenous *S. pyroides* (a), *C. africana* (b), *G. buxifolia* (c) and an introduced *A. mearnsii* (d) at New Forest.

1
2 Figure 7. Daily water-use for three *S. mauritianum*, a multi-stemmed *B. salviifolia* and an *A.*
3 *mearnsii* using the SSS technique at New Forest from December 2013 to June 2014.
4

1
 2


Table 2. Sap flow (daily and accumulated) for each species measured at New Forest

Forest Type / Location	Species	Diameter (mm)	Daily Average Summer Sap Flow (L.d ⁻¹)	Daily Average Winter Sap Flow (L.d ⁻¹)	Annual Accumulated Sap Flow (L)
Indigenous Forest (Site 1)	<i>S. pyroides</i>	98	9	3.6	1 639
	<i>G. buxifolia</i>	114	15	3.9	3 901
	<i>G. buxifolia</i>	58	12	3.8	2 883
Introduced/Alien Forest (Site 2)	<i>A. mearnsii</i>	131	18	15	5 786
	<i>A. mearnsii</i>	166	23	17	7 310
Indigenous Forest (Site 3)	<i>C. africana</i>	102	22	0.9	4 307
	<i>K. africana</i>	50	10	3.7	2 508
	<i>L. sericea</i>	212	9	4	2 369
Introduced/Alien Forest (Site 4)	<i>E. grandis</i>	165	27	15	7 668
	<i>E. grandis</i>	96	25	14	7 142
Mixed understorey (Site 5)	<i>B. salviifolia</i>	28	5.9	5.5	2 080
	<i>S. mauritianum</i>	25	0.4	0.3	127
	<i>S. mauritianum</i>	10	2.0	0.9	529
	<i>S. mauritianum</i>	19.1	2.9	1.2	748
	<i>S. mauritianum</i>	26.7	3.3	1.6	894
	<i>A. mearnsii</i>	25.6	3.4	1.8	949

3

1

2

3

4

Figure 8. Hourly volumetric soil water content and the hourly rainfall at site 1 at New Forest.

5

6

7

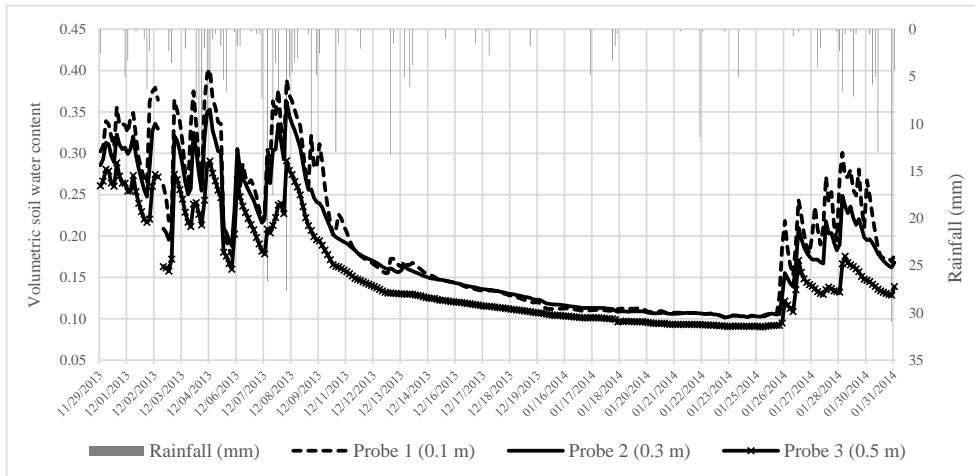


Figure 9. Hourly soil volumetric water content and the hourly rainfall at site 2 at New Forest.